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Abstract. This paper describes a continuous estimation of distribution
algorithm (EDA) to solve decomposable, real-valued optimization pro-
blems quickly, accurately, and reliably. This is the real-coded Bayesian
optimization algorithm (rBOA). The objective is to bring the strength of
(discrete) BOA to bear upon the area of real-valued optimization. That
is, the rBOA must properly decompose a problem, efficiently fit each
subproblem, and effectively exploit the results so that correct linkage
learning even on nonlinearity and probabilistic building-block crossover
(PBBC) are performed for real-valued multivariate variables. The idea
is to perform a Bayesian factorization of a mixture of probability dis-
tributions, find maximal connected subgraphs (i.e. substructures) of the
Bayesian factorization graph (i.e., the structure of a probabilistic model),
independently fit each substructure by a mixture distribution estimated
from clustering results in the corresponding partial-string space (i.e., sub-
space, subproblem), and draw the offspring by an independent subspace-
based sampling. Experimental results show that the rBOA finds, with a
sublinear scale-up behavior for decomposable problems, a solution that is
superior in quality to that found by a mixed iterative density-estimation
evolutionary algorithm (mIDEA) as the problem size grows. Moreover,
the rBOA generally outperforms the mIDEA on well-known benchmarks
for real-valued optimization.

1 Introduction

In the community of evolutionary computation, estimation of distribution al-
gorithms (EDAs), also known as probabilistic model building genetic algorithms
(PMBGAs), have attracted due attention of late [1], [2]. Incorporating (auto-
mated) linkage learning techniques into a graphical probabilistic model, EDAs
exploit a feasible probabilistic model of selected (promising) solutions found so
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far while efficiently traversing the search space [2]. EDAs iterate the three steps
listed below, until some termination criterion is satisfied:

1. Select good candidates (i.e., solutions) from a (initially randomly generated)
population (of solutions).

2. Estimate the probability distribution from the selected individuals.
3. Generate new candidates (i.e., offspring) from the estimated distribution.

It must be noted that the third step uniquely characterizes EDAs because it
replaces traditional recombination and mutation operators employed by simple
genetic algorithms (sGAs). Although the sGAs (with well-designed mixing ope-
rator) and EDAs deal with solutions (i.e., individuals) in quite different ways, it
has been theoretically shown (and empirically observed) that their performances
are quite close to each other [1], [2]. Moreover, EDAs ensure an effective mixing
and reproduction of building blocks (BBs) due to their ability to accurately cap-
ture the BB structure of a given problem, thereby solving GA-hard problems
with a linear or sub-quadratic performance in terms of (fitness) function eva-
luations (i.e., sublinear scale-up behavior) [2]-[5]. However, there is a trade-off
between the accuracy of the estimated distribution and the efficiency of com-
putation [4], [5]. For instance, a complicated, accurate model is recommended if
the fitness function to be evaluated is computationally expensive.

A large number of EDAs have been proposed for discrete and real-valued (i.e.,
continuous) variables [1]-[6]. Depending on how intricate and involved the pro-
babilistic models are, they are divided into three categories: no dependencies,
pairwise dependencies, and multivariate dependencies. Among them, the cate-
gory of multivariate dependencies endeavors to use general probabilistic models,
thereby solving many difficult problems quickly, accurately, and reliably [2]. The
more complex the probabilistic model the harder as well is the task of finding
the best structure. At the expense of some computational efficiency (with regard
to learning the model), they can significantly improve the overall time comple-
xity for large decomposable problems due to their ability to largely reduce the
number of (computationally expensive) fitness function evaluations [2]. Extended
compact genetic algorithm (ecGA), factorized distribution algorithm (FAD), and
Bayesian optimization algorithm (BOA) for discrete variables and estimation of
multivariate normal algorithm (EMNA) and (mixed) iterative density-estimation
evolution algorithms ((m)IDEAs) for real-valued variables belong to this cate-
gory [1]-[6].

Note that the BOA is perceived to be an important effort that employs ge-
neral probabilistic models for discrete variables [3], [4]. It employs techniques
for modeling multivariate data by Bayesian networks so as to estimate the joint
probability distribution of promising solutions. The BOA is very effective even
on large decomposable (discrete) problems with tight BBs. It is only natural
that the principles of BOA be tried on continuous (i.e., real-valued) variables.
This attempt led to (m)IDEAs [5], [6] which exploit Bayesian Information Cri-
terion (BIC) (that is a penalized maximum likelihood metric) for selecting a
probabilistic model and employ a mixture of normal distributions for fitting the
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(chosen) model. Like the BOA, they do not require any problem dependent in-
formation. There is a general, but simple factorization mixture selection among
the (m)IDEAs with regard to model accuracy and computational efficiency. This
is called ‘mIDEA’ in this paper. The mIDEA clusters the selected individuals
and subsequently estimates a factorized probability distribution in each cluster
separately [5], [6]. It allows the mIDEA to efficiently model nonlinear dependen-
cies by breaking up the nonlinearity between the variables and recognizing only
linear relations in each cluster. This results in a better performance on epistatic
and nonlinear (real-valued) problems.

It is noted that the power of BOA arises from modeling any type of depen-
dency and realizing probabilistic building-block crossover (PBBC) that appro-
ximates population-wise building-block crossover by a probability distribution
estimated from the results of proper decomposition [4]. Analogously to (one-bit)
uniform crossover, the PBBC may shuffle as many superior partial solutions
(i.e., BBs) as possible in order to bring about an efficient and reliable search for
the optimum. However, the mIDEA cannot realize the PBBC although learning
various types of dependency is possible. This is explained below.

BBs can be defined by groups of real-valued variables, each having values in
some neighborhood (i.e., small interval), that break up the problem into smaller
chunks which can be intermixed to reach the optimum. As the mIDEA clusters
the selected individuals on the problem dimension itself, preserving and bree-
ding BBs is quite difficult unless clusters contain many BBs at the same time.
However, the probability of coming up with clusters is very small and decrea-
ses exponentially as the problem size grows. In other words, the mIDEA can
hardly find an optimal solution without maintaining at least one cluster that
contains most of the superior BBs. It follows that the mIDEA may not be very
effective on large decomposable problems. It is noteworthy that many real-world
optimization problems are bounded difficult: the problems can be (additively)
decomposed into subproblems of a certain/bounded order [4], [5].

In this paper, we propose a real-coded BOA (rBOA) along the lines of BOA.
The rBOA can solve various types of decomposable problems in an efficient and
scalable manner, and also find a high quality solution to traditional benchmark
cases.

The rest of the paper is organized as follows. Section 2 explains the rBOA
in detail and Section 3 presents the experimental results obtained with the al-
gorithms. The paper concludes with a summary in Section 4.

2 Proposed Real-Coded BOA

This section describes rBOA as a tool to efficiently solve problems of bounded
difficulty with a sublinear scale-up behavior. Fig. 1 presents the pseudocode of
rBOA.
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Step 5.  Generate offspring  from the joint pdf )(
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Yf  on the basis of subproblems 

for 0i to 1m do 

for 0k to 1q do 

        )(
1,0,

,,
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I terChooseClus ;
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ZZ
)(

),(
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i

ii

fSampling ;

Step 6.  Create a new population  by replacing some individuals with 

)(eplacePartiallyR ;

Step 7.  If the termination criteria are not met, go to Step 2.

Fig. 1. Pseudocode of rBOA.

2.1 Model Selection

A factorization (or a factorized probability distribution) is a probability distri-
bution that can be described as a product of generalized probability density
functions (gpdfs) [5]. Bayesian factorizations, also known as Bayesian factorized
probability distributions come under a general class of factorizations [5], [7]. A
Bayesian factorization estimates a joint gpdf for multivariate (dependent) va-
riables by a product of univariate conditional gpdfs of each random variable.
The Bayesian factorization is represented by a directed acyclic graph, called a
Bayesian factorization graph, in which nodes (vertices) and edges (arcs) identify
the corresponding variables (in the data set) and the conditional dependencies
between variables, respectively [5].
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An l-dimensional real-valued optimization problem is considered. In general,
a pdf is represented by a probabilistic model M that consists of a structure ζ
and an associated vector of parameters θ (i.e., M = (ζ,θ)) [5], [6]. As the rBOA
employs the Bayesian factorization, the joint pdf of a problem can be encoded
as

f(ζ,θ)(Y) =
l−1∏

i=0

f
θ̇

i(Yi|Πi) (1)

where Y = (Y0, · · · , Yl−1) presents a vector of real-valued random variables, Πi

is the set of parents of Yi (i.e., the set of nodes from which there exists an edge
to Yi), and f

θ̇
i(Yi|Πi) is the conditional pdf of Yi conditioned on Πi with its

parameters θ̇
i
.

There are two basic factors behind any scheme for learning the structure
of a probabilistic model (i.e., model selection): a scoring metric and a search
procedure [3]-[6]. The scoring metric measures the quality of the structure of
Bayesian factorization graph and the search procedure efficiently traverses the
space of all feasible structures for finding the best one with regard to a given
scoring metric. It may be noted that BOA and mIDEA employ a Bayesian
information criterion (BIC) as the scoring metric and an incremental greedy
algorithm as the search procedure.

Let S be the set of selected individuals, viz., S =
(
y0,y1, · · · ,y|S|−1

)
. The

BIC metric that should be minimized is formulated as follows:

BIC
(
f(ζ,θ)(Y), S)

= − ln




|S|−1∏

j=0

f(ζ,θ)(yj)



 + λ ln (|S|) |θ|

= −
|S|−1∑

j=0

ln
(
f(ζ,θ)

(
yj

))
+ λ ln (|S|) |θ| (2)

[5], [6] where λ regularizes the extent of penalty. In (2), the first and second
terms represent the model fitting error and the model complexity, respectively.
Since minimal negative log-likelihood is equivalent to minimal entropy, (2) is
rewritten as

BIC
(
f(ζ,θ)(Y), S)

= |S| h (
f(ζ,θ)(Y)

)
+ λ ln (|S|) |θ| (3)

[5], [6] where h
(
f(ζ,θ)(Y)

)
represents the differential entropy of f(ζ,θ)(Y).

Although the BIC fails to exactly capture the types of interaction between
variables, the important point is to have a knowledge of the variables which are
dependent regardless of linearity or nonlinearity. The reason for this assertion is
that the dependent type itself is learned in the model fitting phase (in Section
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2.2). However, the BIC might lead to incorrect factorization if there is some kind
of symmetry in the selected individuals. In other words, there is a high possibility
that the dependent variables are learned as independent ones. In order to avoid
this problem as well as to enhance the reliability of learning dependency, a (joint)
mixture distribution is employed for modeling the selected individuals. With this
in view, the BIC in (3) can be modified as (4)

BIC
(
K, f(ζ,θ)(Y), S)

=
K∑

i=1

{|Si| h
(
f(ζ,θi)(Y)

)}
+ Kλ ln (|S|) |θi| (4)

where K is the number of mixture components, |Si| is the expected number of
selected individuals drawn from a probability distribution f(ζ,θi)(Y), and θi is
parameters of ith mixture component.

The incremental greedy algorithm starts with an empty graph with no edges,
and proceeds by (incrementally) adding an edge that maximally improves the
metric until no more improvement is possible [3]-[6]. The greedy algorithm does
not find an optimal structure in general because searching for the structure is
an NP-complete problem. However, the computed structure is good enough for
encoding most important interactions between variables of the problem [3], [4].

A Bayesian factorization graph that represents a probabilistic model struc-
ture is obtained after factorization and application of the incremental greedy
algorithm.

2.2 Model Fitting and Sampling

It may be noted that maximal connected subgraphs of a Bayesian factorization
graph are the component subproblems. A hard optimization problem can thus
be reduced to the problem of solving several easy subproblems (if the resulting
graph consists of several maximally connected subgraphs). Any graph search
algorithm can be applied to extract the maximally connected subgraphs. As the
BBs in real space are defined as a set of variables with some neighborhood that
can be intermixed for finding an optimum, the variables of each subproblem can
eventually build up BBs in view of their close interactions.

The BOA models any type of dependency because it maintains all the con-
ditional probabilities, without losing any information due to the finite cardina-
lity (of the set of variables). Moreover, the BOA naturally performs the PBBC
because it strictly separates and independently treats the maximally connec-
ted subgraphs all through the (probabilistic) model selection, model fitting, and
(offspring) sampling phases. Hence, the BOA can solve difficult problems quickly,
accurately, and reliably.

On the other hand, the mIDEA clusters the selected individuals for breaking
up the nonlinear dependencies between variables and subsequently estimates a
factorized probability distribution in each cluster [5], [6]. However, it cannot
realize the PBBC even though any type of mixture distribution, depending on
the pdf used in each cluster, can be constructed. The reason is discussed below.
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The clustering is performed on the problem space itself (instead of the sub-
problem space) and the mixture distribution is constructed from a linear combi-
nation of factorized pdfs (estimated in clusters). In the sampling phase, an entire
individual is drawn from a proportionally chosen pdf. Hence, at least one cluster
must contain almost all the (superior) BBs of the problem if the aim is to find
an optimal solution. In order to get such clusters, however, a huge population
and a very large number of clusters are required. It may result in an exponen-
tial scale-up behavior, even if the problem is decomposable into subproblems
of bounded order. In other words, the mIDEA may easily be misled by many
(deceptive) suboptima as it cannot efficiently capture and boost (superior) BBs.

After finding a feasible probabilistic model through the Bayesian factorization
(in Section 2.1), the promising subproblems whose variables have linear and/or
nonlinear interactions are obtained by extracting maximal connected subgra-
phs from the resulting factorization graph. Next to the problem decomposition,
a clustering is performed on each subproblem (i.e., subspace). Although any
clustering algorithm can be used, a computationally inexpensive algorithm is
desirable. The purpose of clustering is twofold: comprehending the nonlinearity
and searching the space effectively. That is, the clustering can model the non-
linear dependencies using a combination of piecewise linear interaction models
resulting from breaking up the nonlinearity. In addition, the clustering has an
effect of partitioning each subspace for effective search. Thereby, the rBOA can
treat each subproblem independently and then fit it efficiently by mixing pdfs
even in the presence of nonlinearly dependent variables. Although Bosman [5]
suggested a framework from which to carve the model as a matter of course, the
focus is somewhat different from that of rBOA.

Let Zi =
{

Zi
0, · · · , Zi

|Zi|−1

}
be a vector of random variables of the ith sub-

problem (viz.,
⋃

i Z
i = Y and

⋂
i Z

i = φ), in which the variables are already
topologically sorted for drawing new partial-individuals corresponding to the
subproblem. Let ζZi

and θZi

indicate a (probabilistic model) structure of the
variables Zi (i.e., substructure) and its associated parameters, respectively (viz.,
MZi

= (ζZi

, θZi

)), and f(ζZi ,θZi
j )

(
Zi

)
represent a joint pdf (i.e. probability dis-

tribution) with parameters θZi

j that are estimated from jth cluster over Zi(i.e.,
the ith subspace). Therefore, a joint pdf of Y can be constructed by a product
of linear combinations of subproblem pdfs as given by

f(ζ,θ)(Y) =
m−1∏

i=0

ci−1∑

j=0

βijf(ζZi ,θZi
j )

(
Zi

)
(5)

where m is the number of subproblems, ci is the number of clusters of Zi, βij

is the mixture coefficients, βij ≥ 0, and
∑ci−1

j=0 βij = 1 for all i. In general, the
mixture coefficient βij is proportional to the number of individuals of the jth
cluster of Zi [5], [6].

If the problem is non-decomposable, the operational mechanism of rBOA is
not much different from that of mIDEA except that the mIDEA can construct
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a different probabilistic model for each cluster. However, the encouraging fact is
that many (real-world) problems are indeed decomposable into several subpro-
blems of bounded order [4].

As preparation for drawing new individuals (i.e., offspring), univariate con-
ditional pdfs of the proposed mixture distribution must be derived on the basis
of subproblems. Therefore, (5) is rewritten as (6) from a sampling point of view:

f(ζ,θ)(Y) =
m−1∏

i=0

ci−1∑

j=0

βijf(ζZi ,θZi
j )

(
Zi

)
=

m−1∏

i=0

ci−1∑

j=0

βij

|Zi|−1∏

k=0

f
θ̈

k
j

(
Zi

k|ΠZi
k

)
(6)

Let X =
{

Zi
k, ΠZi

k

}
, and µ, Σ be the mean vector and the symmetric cova-

riance matrix of X, respectively. Employing the normal pdf due to its inherent
advantages - close approximation and simple analytic properties - the univariate
conditional pdfs in (6) can be obtained from

f
θ̈

k
j

(
Zi

k|ΠZi
k

)
= fN

(
X0|X1, · · · , X|X|−1

)
=

1√
2πσ̃

e− (X0−µ̃)2

2σ̃2 (7)

[5], [6] where σ̃ = 1√
(Σ−1)0,0

, µ̃ = µ0 −
∑|X|−1

i=1 (Xi−µi)(Σ−1)
i,0

(Σ−1)0,0
.

Sampling the new individuals from the resulting factorization of (6) is
straightforward [5]. At first, the normal pdf over the jth cluster of the nor-
mal mixture estimate for the ith subproblem is selected with probability βij .
Subsequently, a multivariate string (i.e., partial-individual) corresponding to Zi

can be drawn by simulating the univariate conditional pdfs (i.e., eqn. (7)) of the
chosen normal pdf which models one of the promising partitions (i.e., a superior
BB) of a subspace (i.e., subproblem). By repeating this for all the subproblems,
superior BBs can be mixed and bred for subsequent search.

3 Experiments and Discussion

This section investigates the performance of rBOA by comparing it with that
of the mIDEA through computer experiments. Solution quality returned by the
fixed number of function evaluations is taken to be a performance measure.
For simplicity, one normal distribution is used for Bayesian factorization (i.e.,
K = 1). The BEND leader algorithm (with a threshold value of 0.3) is used
as the clustering algorithm due to its speed and flexibility [5], [6]. Truncation
selection with τ = 0.5 and BIC with λ = 0.5 have been invoked. Since no prior
information about the problem structure is available in practice, we set |Y| − 1
for the number of allowable parents. Each experiment is terminated when the
number of function evaluations reaches 100n, where n is the population size. All
the results were averaged over 100 runs.
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3.1 Test Problems

Two types of problem are considered for investigating the performance of rBOA
on decomposable problems. The first test problem is a real-valued deceptive
problem (RDP) composed of real-valued trap functions. The problem is given
by

FRDP (y) =
m−1∑

i=0

ftrap

(
yi·k, · · · , yi·k+(k−1)

)
(8)

where yj ∈ [0, 1], ∀j, k and m are the subproblem size and the number of
subproblems, respectively, and ftrap

(
yi·k, · · · , yi·k+(k−1)

)
is a k-dimensional trap

function defined by

ftrap

(
yi·k, · · · , yi·k+(k−1)

)
=





1.0, if 0.8 ≤ yi·k+j ≤ 1.0, ∀j,

0.8 −
√∑k−1

j=0 y2
i·k+j

k , otherwise.
(9)

The second test problem is a real-valued nonlinear problem (RNP) that is
constructed by concatenating Rosenbrock functions. The problem is formulated
as

FRNP (y) =
m−1∑

i=0

fR

(
yi·k, · · · , yi·k+(k−1)

)
(10)

where yj ∈ [−5.12, 5.12], ∀j, and fR

(
yi·k, · · · , yi·k+(k−1)

)
is a k-dimensional

Rosenbrock function defined as Table 1.
Note that the variables of the subproblem (i.e., real-valued trap function,

Rosenbrock function) strongly interact with each other.
Moreover, four traditional benchmark problems that do not have any obvious

‘decomposibility’ features are also investigated. They are shown in Table 1 and
should be minimized.

3.2 Experimental Results and Discussion

Fig. 2(a) compares the proportion of correct BBs for the algorithms as applied
to the RDPs with k = 2 and varying m. Since a RDP consists of m subproblems,
the effective problem difficulty is proportional to m in general. Hence, the po-
pulation size is supplied by a linear model α · m, viz., n = 100m. The results
show that the solution found by the rBOA is much better than that returned
by the mIDEA. It is also seen that the rBOA achieves stable quality of soluti-
ons while the performance of mIDEA rapidly deteriorates as the problem size
increases. That is, the rBOA exhibits a linear scale-up behavior for (additively)
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Table 1. Traditional benchmark problems for numerical optimization

Problem Function Range

Sphere
∑l−1

j=0 y2
j yj ∈ [−5, 5]

Griewank 1
4000

∑l−1
j=1 (yj − 100)2 − ∏l−1

j=0 cos
(

yj−100√
j+1

)
+ 1 yj ∈ [−600, 600]

Michalewicz
∑l−1

j=0 sin(yj)sin20
(

(j+1)·y2
j

π

)

yj ∈ [0, π]

Rosenbrock
∑l−1

j=1

{
100 · (yj − y2

j−1)
2 + (1 − yj−1)2

}
yj ∈ [−5.12, 5.12]
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Fig. 2. Comparison of the rBOA and mIDEA on decomposable problems.

decomposable deceptive problems; while the mIDEA has an exponential scala-
bility. Fig. 2(b) depicts the objective function values returned by the algorithms
when applied to the RNP with k = 2 and varying m. A linear model is also
used for supplying population, i.e., n = 300m. It is seen that the performance
of both algorithms gracefully deteriorate as the number of subproblems grows.
It implies that the scale-up behavior of both algorithms becomes sublinear for
decomposable nonlinear problems. However, the results show that the rBOA ou-
tperforms the mIDEA rather substantially with regard to the quality of solution.
From Figs. 2(a) and (b), we may conclude that the rBOA finds a better solu-
tion with a sublinear scale-up behavior for decomposable problems than does
the mIDEA. Note that the good solution and the sublinear scale-up behavior of
the rBOA bring about the problem decomposition (in the model selection), and
subspace-wise model fitting and (offspring) sampling operations.

Table 2 compares the solutions found by the algorithms as applied to the
test functions of Table 1. The results show that the rBOA is also superior to
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Table 2. Performance of the algorithms on the benchmarks (l = 5)

Problem Population mIDEA rBOA
Type Size Mean STD Mean STD

Sphere n = 500 0.000310 0.001758 < 10−7 -
Griewank n = 2000 0.067267 0.018433 0.063001 0.016415

Michalewicz n = 500 -4.606095 0.066925 -4.813710 0.019322
Rosenbrock n = 5000 0.003899 0.010477 0.017825 0.091988

the mIDEA except when working on the Rosenbrock function. This is explained
below.

The variables of the Rosenbrock function are highly nonlinear. In other words,
they strongly interact around a curved valley. Also, it is symmetric. It is clear
that incorrect factorizations (i.e., no dependencies between variables) are encoun-
tered at an early stage of rBOA and mIDEA. Due to the incorrect structure,
they try to solve the problems by treating the variables in isolation. Of course,
finding an optimum in this way is difficult because any given algorithm does not
cross the intrinsic barrier. After a few generations, individuals start to collect
round the curved valley. In fact, the rBOA can easily capture such a nonlinear
symmetric dependency. However, the factorization employed one normal distri-
bution in this experiment. It may bring about incorrect linkage learning (i.e.,
independent interaction) due to symmetry. This is no cause for concern when
more than one normal distribution is used for factorization (the situation arising
of more than one distribution is not shown in this paper, though). On the other
hand, the mIDEA can cope with the cancellation effect to some extent by the
use of clustering in the overall problem space.

As a result, the proposed rBOA finds a high quality solution with a sublinear
scale-up behavior for decomposable problems while finding acceptable solutions
to popular test problems.

4 Conclusion

This paper has presented a real-coded BOA as a continuous EDA. Decompos-
able problems were the prime targets. Sublinear scale-up behavior (of rBOA)
was a major objective. This was achieved by linkage learning and probabi-
listic building-block crossover (PBBC) on real-valued variables. As a step in
this direction, Bayesian factorization was performed by means of a mixture of
pdfs, the substructures were extracted from the resulting Bayesian factorization
graph (i.e., problem decomposition), and each substructure was fitted by mixing
normal pdfs whose parameters were estimated from the subspace-based (e.g.,
subproblem-based) clusters. In the sampling phase, offspring were generated by
a subproblem-wise sampling procedure.

Experimental studies demonstrated that the rBOA finds a better solution
and exhibits a superior scale-up behavior (i.e., sublinear) ( vis-a-vis the mIDEA)
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while encountering decomposable problems regardless of inherent problem cha-
racteristics such as deception and/or nonlinearity. Moreover, the solution of
rBOA is generally better than that of mIDEA for traditional real-valued bench-
marks.

Although more work needs to be done, rBOA’s strategy of decomposing
problems, modeling the resulting building blocks, and then searching for better
solutions appears to have certain advantages over clustered model building that
has been suggested and used elsewhere. Certainly, there is much work to be
done in exploring the method of decomposition, the types of models utilized, as
well as their computational implementation and speed, but this path appears to
lead to a class of practical procedures that should find widespread use in many
engineering and scientific applications.
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